Showing posts with label Progressive Jackpots. Show all posts
Showing posts with label Progressive Jackpots. Show all posts

Saturday, October 12, 2013

What is the Allure of Progressives


            There is a theory in physics that goes for every action there is an equal and opposite reaction.  In gambling, there is a similar theory.  For every table game there will eventually be a sidebet.  And, for every sidebet there will be a Progressive version of the sidebet.  The math behind Progressives is probably the least understood math of any type of gambling.  It really isn't that hard once it is explained properly, but I've worked with a lot of inventors on a lot of Progressives, and it is fairly obvious to me that few people, even in the industry, understand how a Progressive works mathematically.

            Generally speaking there are 3 components of a sidebet - the fixed pays, the seed and the contribution rate.  Normally when we calculate the payback of a sidebet, we simply multiply the fixed pays by the frequency of each winning hand and sum up these values.  For a Progressive, we have to alter one step slightly and add one.  For the jackpot event, we use the seed amount as the equivalent of the fixed pay for that event.  Each time it is hit, the casino is on the hook to put that money back on the meter, so it is similar to a fixed pay in that regard.  We then need to add the contribution rate - which is the amount of each dollar wagered that goes on the meter - to the total payback calculated.    I'll save more details for another day, as this is not the point of today's column.  What is the point is to discuss how a Progressive differs from other wagers.

            While the top pay for most sidebets are pretty large, the amount they contribute to the overall payback is usually pretty small.  If you pay 1000 for a 1 in a million even, the contribution rate is a meager 0.1%.   In video poker the Royal Flush contributes only 2% to the payback of the game.  If we were to look at most table game sidebets, we'd probably find that most top pays contribute about 1-2% (or less) to the overall payback.  But, when we switch to a Progressive, we find that the top pay frequently contributes 15-20% to the payback when we take into account both the seed and contribution rate.  What does this mean for the Player?

            As I said, the Royal Flush accounts for 2% of the payback of video poker.  What this usually means is that until you hit one, you're only playing at about 97.5% which can be a bit rough.  When you hit one - and if you are a regular player, you WILL hit one, you bring the theoretical payback back to 99.5%.  Hit the Royal more frequently than 'normal' and you're likely up money as you will be above 100%.  With Progressives, it doesn't quite work the same way.  That top hand is either more rare or you'll be playing a game that deals much more slowly than video poker, meaning that there are no guarantees that you will EVER hit it.  So, even if the sidebet were paying 99.5% like video poker, ONE PLAYER is going to wind up winning 15-20% of that payback and everyone else will be playing at 77.5% - 82.5%. 

            When you consider the fact that many sidebets have paybacks far lower than 99.5%, you realize that the picture for those that don't hit the jackpot is even more bleak.  So, why do people play Progressives?  There are two main reasons.  One is a bit emotional and the other a bit more practical.

            First, Players have always been willing to accept low paybacks for a chance to win a life-changing amount of money.  The Lotto has made a lot of money for a lot of states.  Most states payout only 70% on their lotteries.  This is lower than the legal minimum of any casino game here in Nevada.  But, for the chance, however slim, of winning millions of dollars, Players are willing to throw a few dollars in for the hope of getting struck by lightning. 

            The second reason deals with the way Progressives work and makes far more mathematical sense.  To the casinos, the payback of a game is the long-term payback, which is calculated as I described earlier.  You'll note that what I described completely ignores the specific value on the meter at any point in time.   This money is merely an accumulation of the contribution rate over time.  It really doesn't matter to them (mathematically), if a jackpot that is supposed to hit about once a year, doesn't get hit for 3 years.  However, to the Player, the payback of ANY wager is dependent upon the specific payouts for each winning hand at the point in which you make the wager.  It doesn't really matter if the contribution rate is 10% of 20%.  If a Jackpot which is supposed to average $250,000, goes all the way up to $600,000 then the payback at that point in time is WELL above the theoretical payback. 


            It is possible that at a particular point in time that the payback of a wager could be over 100%.  At this point, it makes sense to play the game mathematically.  The problem is, however, that it will be one person that will benefit from this occurrence and it may not be you.  Then again, it might!

Tuesday, October 18, 2011

Progressing

            Last week, I alluded to the seemingly complex math associated with games that offer progressive payouts (i.e. "progressives").  Progressives are games where the top pays are not fixed dollar amounts or odds payouts, but rather have variable payouts that increase as more wagers are made since the last time the prize was won.

            Progressives have become very popular for table games sidebets.  They have long been used for some video poker machines for payouts on Royal Flushes.  Most commonly they are found on slot machines, which love to use a progressives ability to create a very large payout for a very rare occurrence.  As is always the case with a random event, the cycle between hits can frequently become far larger than 'average' and thus create an even larger than normal jackpot.

            As I described last week, Progressives essentially have two different paybacks.  The first is the long-term payback which is what concerns the casino.  The second is the payback of the wager at any point in time which is what should concern the Player.  Let's take a closer look at how these are calculated and why there are two different paybacks.

            Normally, to calculate payback, we take the frequency of a winning hand, multiply it by the payout of this hand which gives us the contribution rate for the hand.  We then sum up these contribution rates to arrive at the overall payback.  For most wagers, the frequency of a particular winning hand is fixed as it is unaffected by strategy.  So, if we are playing Caribbean Stud Poker, we don't have to worry about the strategy of Folding and Playing for the sidebet because you would never Fold a hand that is strong enough to earn a bonus.  Video Poker presents an additional challenge in that you can alter you strategy depending on the payouts and thus alter the frequency of winning hands.

            So, to calculate the payback of a Progressive at a particular point in time, we follow the calculation I just described.  For example, let's assume the following paytable at a particular point in time for a $1 wager:

Hand
Pays (For 1)
Royal Flush
$113,473
Straight Flush
250
Four of a Kind
50
Full House
10
Flush
7
Straight
5
Three of a Kind
3
Two Pair
2

           


            If we perform the calculation described, we get the following:

Hand
Frequency
Pays (For 1)
Contribution Rate
Royal Flush
0.00015%
$65,473
10.07680%
Straight Flush
0.00139%
2500
3.46292%
Four of a Kind
0.02401%
250
6.00240%
Full House
0.14406%
50
7.20288%
Flush
0.19654%
20
3.93080%
Straight
0.39246%
15
5.88697%
Three of a Kind
2.11285%
10
21.12845%
Two Pair
4.75390%
5
23.76951%
Total
7.62536%

81.46074%

            So, if you were to walk up to a table and see these payouts, the payback of the game at that very point in time is 81.46%

            But, the payback to the casino could be vastly different.  Let's assume that the Royal Flush is seeded at $50,000.  This means that every time someone wins the jackpot, the prize for the Royal Flush will be reset to $50,000.  Further, let's assume that for every $1 wager that is made, the Progressive increases by 10 cents (i.e. 10% of the wager).

            There are two changes that we must now make to calculate the payback for the casino.  The first is that we always use the seed amount as the payout for that hand.  Thus, we repeat the calculation shown above but we use $50,000 as the payout for the Royal Flush.  This is the amount that the casino itself directly paying out each time the jackpot is won.  When we do this, we find that the payback of this wager is 79.08%.

            However, we must now ADD to this payback the amount of each wager this added to the Progressive meter - in this case 10%.  Eventually this 10% will go back to a Player.  It might happen while the jackpot is at $50,000.10 or it might happen when it is at $120,000 or more.  From the casino's standpoint, it doesn't matter.  That 10% belongs to the players.  Essentially all the Players that don't win the jackpot are handing those dimes to the person who finally does.  So, when we add that 10% to the 79.08% we find that to the casino this wager really has an 89.09% theoretical payback.  Over time, the casino will keep 10.91% of every dollar wagered.

            So, if you were to play this wager while the Jackpot is $65,473, you would actually be playing it on the 'low side' of the average jackpot.  How big is the average jackpot?  To calculate that, we take the average number of hands between jackpots (in this case 649,740) and multiply it by that 10%.  On average the jackpot will grow by $64,974 before it is hit.  We add this to the seed amount and find that the average jackpot will be $114, 974.  At that point, the payback of the wager is the same as theoretical payback of the wager. 

            If the jackpot grows to be above $185,930 (which is very likely at times), then the payback of the wager at that point will actually be OVER 100%.  The only problem with this is that it will only be over 100% for the ONE person who actually wins the jackpot.  Everyone else will just be feeding dimes to the one person who wins.